Critmag

Home » Publications » Natural cooling paths control the partitioning of REE between clinopyroxene and melt

Natural cooling paths control the partitioning of REE between clinopyroxene and melt

A new study shows that substitution of aluminium for silicon in clinopyroxene tetrahedra increases during cooling. The resulting local charge balance favours REE incorporation into the crystal lattice.

A new study by Scarlato and co-workers shines the spotlight on clinopyroxenes in a trachybasaltic dyke in the Valle del Bove depression on Mt Etna, Italy.  Previous studies by Mollo et al. were able to quantify how the the cooling rate of the crystals increased from 0.02ºC/min to 1.13ºC/min from the core to rim of the dyke. The fact that the solidification path in this igneous feature was already well-constrained provided a perfect platform for this study, which explores the effect of temperature variations on the partitioning of rare earth elements (REE) between clinopyroxene and melt.

The structure of the clinopyroxene mineral consists of interlocking silicon tetrahedra, and two sites where metal cations can be incorporated (called M1 and M2). The study found that a higher cooling rate favours the substitution of tetrahedral aluminium (AlIV) for silicon. AlIV acts as a local charge balance for REE ions; as a consequence, REE are more easily accommodated into the M2 site of the mineral lattice.

Scarlato et al.’s measurements from this natural laboratory match the theoretical predictions of REE behaviour made using the ‘lattice strain model’ of Blundy & Wood (1994). This demonstrates that the REE partitioning between melt and clinopyroxene in naturally cooled magmas is controlled by local charge balance and cation substitutions, rather than kinetic parameters or diffusion.

Scarlato P, Mollo S, Blundy JD, Iezzi G, & Tiepolo M (2014) ‘The role of natural solidification paths on REE partitioning between clinopyroxene and melt’ Bulletin of Volcanology, 76(3), 1-4. http://dx.doi.org/10.1007/s00445-014-0810-1

SCIENTIFIC ABSTRACT

We document for the first time the role played by natural solidification paths on the partitioning of rare earth elements (REE) between clinopyroxene and melt. To do this, we investigated the compositional variation of clinopyroxenes formed under increasing cooling rate conditions from core to rim of a dike at Mt. Etna volcano. As the rate of cooling increases, clinopyroxenes are progressively depleted in Si + Ca + Mg counter-balanced by enrichments in Al + Na + Ti. Consequently, the concentration of REE in clinopyroxene increases due to an increased ease of locally balancing the excess charge at the M2 site as the number of surrounding tetrahedral aluminium atoms increases. Since Aliv in clinopyroxene is a charge-balancing cation for REE, the partition coefficients (DREE) measured at the dike chilled margin are distinctly higher than those from the dike interior. We conclude that, in naturally solidifying magmas, kinetically controlled cation substitution reactions can be treated in terms of the energetics of the various charge-imbalanced configurations. This finding is corroborated by the near-parabolic dependence of DREE on cation radius due to charge-balance mechanisms described by the lattice strain model.

GO TO PUBLICATION

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s